Problem 1.20

Find V_{o} and the power absorbed by each element in the circuit of Fig. 1.31.

Figure 1.31
For Prob. 1.20.

Solution

To get the power for a circuit element, multiply the voltage and current through it. The current is negative if it flows out of the element through the positive end.

$$
\begin{aligned}
p_{\text {independent voltage source }} & =(30 \mathrm{~V})(-6 \mathrm{~A})=-180 \mathrm{~W}(\text { emitted }) \\
p_{\text {left } 12 \mathrm{~V}} & =(12 \mathrm{~V})(6 \mathrm{~A})=72 \mathrm{~W} \text { (absorbed) } \\
p_{\text {middle } V_{0}} & =\left(V_{0}\right)(3 \mathrm{~A})=3 V_{0} \mathrm{~W}(\text { absorbed }) \\
p_{\text {right } 1 \mathrm{~A}} & =(28 \mathrm{~V})(1 \mathrm{~A})=28 \mathrm{~W} \text { (absorbed) } \\
p_{\text {right } 2 \mathrm{~A}} & =(28 \mathrm{~V})(2 \mathrm{~A})=56 \mathrm{~W}(\text { absorbed }) \\
p_{\text {dependent voltage source }} & =(5 \times 2 \mathrm{~V})(-3 \mathrm{~A})=-30 \mathrm{~W}(\mathrm{emitted})
\end{aligned}
$$

Use the fact that the sum of power in this circuit is zero (law of conservation of energy) to solve for V_{0}.

$$
\sum p=\left(-180+72+3 V_{0}+28+56-30\right) \mathrm{W}=\left(3 V_{0}-54\right) \mathrm{W}=0
$$

Therefore,

$$
V_{0}=18 \mathrm{~V} \quad \Rightarrow \quad p_{\text {middle }} V_{0}=3 V_{0}=54 \mathrm{~W} .
$$

